Radio-frequency transmission of few-layer WSe₂ nanosheet Coplanar waveguide

Jae Young Park, Juyeong Oh, Seong Chan Jun*

School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749,

Korea.

scj@yonsei.ac.kr

Abstract

For a decade, many researches regarding graphene, which has metallic two-dimensional structure, have been explored. However, there are a lot of limits in the field of nanoscale electronics because of its zero bandgap. Transition Metal Dichalcogenides (TMDc) has been spotlighted as a next-generation nanomaterial due to its existence of bandgap and its good electrical and mechanical characteristics¹. Even though TMDc materials shows various electronic properties²⁻³, there is no demonstration with high frequency transmission yet.

In this research, We confirmed WSe₂, one of TMDc can be a good candidate for an radio-frequency interconnector. To fabricate the device, WSe₂ nanosheet was mechanically exfoliated on highly resistive Si/SiO₂ substrate. Also, gold pattern was deposited for using ground-signal-ground (GSG) probe method. We demonstrate high frequency characteristics of WSe₂ in range of 0.5–40 GHz. We measured Scattering parameters, and extracted equivalent properties including impedance, resistance to understand the transport conductivity of WSe₂. The results of impedance and resistance within the frequency region through WSe₂ show negligible degradation. Those results show that WSe₂ has high potential for transmitting signals at gigahertz ranges although it has large bandgap.

References

[1] Radisavljevic. et al. "Single-layer MoS₂ transistors." Nature Nanotech. 6 (2011) 147–150.

[2] Lee, H. S. *et al.* "MoS₂ Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap." *Nano Lett.* **12** (2012) 3695–3700.

[3] Das, Saptarshi. *et al.* "WSe₂ field effect transistors with enhanced ambipolar characteristics." *Applied physics letters* 103.10 (2013): 103501.

Figures

